
www.manaraa.com

Abstract. In order for enterprises to collaborate at the business-process level,
they must deal with two kinds of processes: the public conversation processes
specifying inter-enterprise document flows, and the private business pro-
cesses specifying local workflows of document manipulation and other
related tasks. The provisioning, interaction and integration of conversation
management and business process management, have become the common
interest of the e-business industry. In this paper we discuss the relationship
and interaction between conversation management and business process
management; point out the difference between public conversation processes
(e.g. BPSS processes) and peer-conversation processes (e.g. BPEL4WS
processes). We then illustrate our collaborative process management system
that has functionally separated conversation manager and business process
manager. The conversation manager is based on the ebXML BPSS standard;
it is used for validating document exchange at run-time and for activating
corresponding process tasks. We have also proposed the conversation model
driven asynchronous task activation mechanism for interaction between a
conversation process and the coupled business process dynamically. With
this mechanism, generic APIs between the conversation manager and the
business process manager can be easily defined and used by multiple plugged-
in conversation managers.

1 Introduction

1.1 Conversation as abstract interface of business collaboration

In order for enterprises to collaborate at the business-process level, they
must allow the business processes run on their local sites to interact [5, 6,
9]. In order to provide abstract interfaces of business interaction
distinguished from the concrete services, Inter-enterprise Conversation
Process (ICP) specification standards such as ebXML BPSS (Business
Process Specification Schema) [11, 14], and conversation enabled business
process specification standards such as BPEL4WS (Business Process

ISeB (2004) 2:111–126

DOI 10.1007/s10257-003-0029-8

How public conversation management integrated
with local business process management

Qiming Chen, Meichun Hsu, Vinkesh Mehta

Commerce One Inc. 4440 Rosewood Drive, Pleasanton, CA 94588, USA

(e-mail: {qiming.chen;meichun.hsu;mehta.vinkesh}@commerceone.com)

Information
Systems

and
e-Business

Management
� Springer-Verlag 2004

www.manaraa.com

Execution Language for Web Services) [2], WSCI (Web Service Choreog-
raphy Interface) [21], WSCL (Web Service Conversation Language) [19]
have been proposed. The conversation processes specified in BPSS serve as
the common templates for all the participating parties. The conversation
processes specified in WSCI or WSCL describe one-party’s way of business
interactions which is expected to be followed by the peer parties while
doing business with it.
As shown in Fig. 1, an ICP specifies the choreography of document

exchange as the abstract interface, leaving the processing and provisioning of
documents to local business processes or services. As the abstract interface,
one ICP can be supported by a variety of business processes and services with
different implementations.
In general, a conversation process and a business process have different

underlying models. To clarify, we distinguish the basic operations of
conversation processes and business processes by calling them conversation
activities and tasks respectively. A conversation activity has two operations
for delivering requesting and responding documents, which may map to one
or more local tasks for consuming and producing the documents. A
conversation process model such as BPSS [11], is different from the
traditional workflow models such as WfMC’s reference model [17]. The
choreography of conversation activities and the flow of task execution are
also semantically different.
Thus, in an inter-enterprise collaboration, each participant needs to deal

with two kinds of processes: the conversation process specifying public
conversation-activities, or ‘‘document-flow’’, and the local business process
specifying private tasks that fulfill the conversation activities. The chore-
ography of document exchange defined in the conversation process actually
indicates the expected behavior of the coupled business process in
processing and producing the corresponding documents; however, since
the conversation process and the coupled business process have different
underlying models and run at different paces, synchronizing their execution
is difficult.

Order

Payment

Change Order Request

Conversation Process

(doc-exchange)

Local Business

Process

Business A

Role

Order Response

ASN

Change Order Result

 Invoice

Business B

Role

Local Business

Process

Fig. 1. Choreographed document exchange as conversation process

112 Q. Chen et al.

www.manaraa.com

1.2 Requirements and hard problems

Several approaches have been investigated for managing business conversa-
tion. For example, a single round-trip conversation may be made through
WSDL invocation but multiple such ‘‘points of conversation’’ would fail to
correlate their semantics at process-level; using workflow messages to carry
documents as payloads can support document exchange between the same
kind of workflow engines but can hardly support ICP standards. In
developing our approach, we start with studying the following basic
requirements for supporting inter-enterprise collaboration.

– A Collaborative Process Manager (CPM) must support choreographed
conversation at process-level rather than ‘‘points of conversation’’ at action
level; support both conversation activities and local tasks; support well-
established conversation process standards (e.g. BPSS); and furthermore,
provides the extensibility for conforming to multiple conversation process
standards.

– Architecturally, the conversation manager must be light-weight with no
function overlap with the coupled process manager. Their functions must
be clearly distinguished.

– Interaction between conversation process and local business process at run-
time is necessary because even if the task flow of a business process is
consistent with the order of document exchange specified in the coupled
conversation process, it is difficult to synchronize the execution of business
process with conversation process, especially when the business process
involves other private applications and runs at a different pace from the
conversation process.

To meet the above requirements, it is necessary to provide a standard
based conversation manager separately from a workflow engine. To allow a
conversation manager and a workflow engine to inter-operate, it is necessary
to deal with two fundamental problems:

– the model difference between a conversation process and a business
process, and

– the run-time interaction between them.

Semantically, a conversation activity specifies the document-flow between
roles, and a process task specifies the invocation of an action by a single role.
The conversation processes and the business processes under different models
have different structures as well. At run-time, a workflow engine actively
schedules tasks to run, but a conversation manager passively waits for the
document exchange events. All these indicate the inadequacy of using a
workflow engine to handle standard-based business conversation even if it is
facilitated with document sending and receiving capability. Further, because
a conversation process is essentially modeled as a graph with branching,
nesting and looping, it may not be formally partial ordered or mapped to a
partial order of tasks under a different process model.
Especially, it is difficult to synchronize a conversation process and the

corresponding local business process because a local business process may
not be carried out at the same pace as the conversation process, and
potentially involves additional private tasks to those related to the

How public conversation management integrated with local business process management 113

www.manaraa.com

conversation. For instance, while sending a document may be pre-scheduled
in the same way as other tasks, receiving a document may not.
In developing a Collaborative Process Manager (CPM) for supporting

inter-enterprise process collaboration, we focused on these key issues. Our
experience reveals that when these issues are addressed properly, then
existing process management platforms can be easily extended to support
inter-enterprise collaboration.

1.3 The solution

We have developed a CPM based on the CommerceOne business process
management platform to support inter-enterprise business collaboration.
Our solutions are characterized by the following.

– Providing the BPSS-based conversation manager for run-time support of
inter-enterprise collaboration. We recognize that business processes
specified in BPEL4WS and WSCI are not pure conversation processes
but having public interface and local context mixed; and map them to
BPSS specification to underlie run-time conversation support.

– Functionally separating conversation management(CM), process manage-
ment (PM) and action management (AM).

– Having conversation manager and process manager interact through
conversation model driven asynchronous task activation.

With the proposed conversation model driven asynchronous task activation
approach, the document exchange information verified by the conversation
manager is used to instantiate the conditions for activating local process tasks
for document manipulation. This mechanism provides a way for separate
CM and PM systems to interact, making their interface fairly dynamic.
The proposed approach allows us to make full use of existing workflow

system components, to support both public conversation processes and local
business processes, and to interface conversation management and process
management dynamically. This architecture also offers the potential of
supporting multiple ICP standards by plugging in multiple conversation
managers built on the corresponding ICP models.
Section 2 compares public and peer conversation process specifications,

and describes how to derive public conversation process out of local business
process. Section 3 illustrates the architecture of our collaborative process
management system, and discusses the dynamic interaction of public
conversation management and local business process management. Section
4 discusses transaction semantics. Finally, some remarks and the comparison
with related work are presented in Section 5.

2 Design-time support: extract public conversation process from local business
process

To explain the reason for us to deal with the public conversation processes
specified in BPSS, we first discuss the difference and relationship of a BPSS
process and a ‘‘peer conversation process’’ specified in BPEL4WS or WSCI.
BPSS is a standard XML language for specifying inter-enterprise,

choreographed conversations. In BPSS, a conversation process is called a

114 Q. Chen et al.

www.manaraa.com

collaboration. A binary collaboration has two authorized-roles and a multi-
party collaboration has more than two partner-roles. The business partners
participating in a collaboration process play these roles; they interact
through a set of choreographed conversation activities (called business
activities in BPSS). A conversation activity may represent a business
transaction consisting of one or two predefined business document flows
between the participating roles. Iteratively a conversation activity may also
represent a nested binary collaboration. While a BPSS process specifies
choreographed document exchanges, it leaves document provisioning and
processing, as well as the decisions on document exchanges, to the local
business process at every participant’s side.
From this point of view, the BPSS model is a ‘‘pure’’ conversation process

model; it deals with messaging only but without incorporating local context
of the participants; it provides the abstract interfaces of business interaction,
regardless of the concrete implementation.

2.1 Public and peer view to conversation

Unlike BPSS, that specifies conversation processes from public view, some
other process specification languages such as BPEL4WS and WSCI, offer the
peer-view of conversation. This can be further explained below.

– A public conversation process provides a public specification of inter-
enterprise collaboration as the legal sequence of document flow, regardless
of any local business logic for the documents to be chosen, sent or
received. For example, a buyer may either confirm or cancel a purchase
order based on some local decision, but the seller is only interested in
whether the document received from the buyer is for confirmation or for
cancellation, regardless of the cause of buyer’s choice.

– A peer conversation process describes peer-side interfaces of conversations,
incorporating with local conditions, rules and policies. While such local
context may provide a base for conversation control, e.g. either confirming
or canceling a purchase order, it is insignificant to, and therefore should
not be exposed to the partner. The typical standard languages for
specifying local conversation control are BPEL4WS and WSCI, and the
typical use of these languages is to specify process-oriented service
composition that incorporates conversation activities.

In summary, although BPSS and BPEL4WS or WSCI have the similar
expressive power for specifying the choreography of document exchanges,
their focus is different in the following aspects.

– The focus of BPSS is on abstract conversation specification, leaving the
document manipulation to other local business processes; while the focus
of BPEL4WS is on executable process specification mixed with conversa-
tional and non-conversational activites, for that local context has to be
taken into account.

– The focus of BPSS is on providing commonly agreed conversation-driven
collaboration protocol; while the focus of BPEL4WS or WSCI is on
specifying one-side conversation-driven service composition.

With the focus on specifying collaboration, BPSS is designed in a totally
symmetric manner, such that the business service interface of each

How public conversation management integrated with local business process management 115

www.manaraa.com

participant can be configured from the same collaboration definition that is
commonly agreed on. Business collaboration is peer-to-peer and cannot be
described by taking the point of view of one-side; it must be specified without
any particular party’s point of view as a pure message flow. The interface is
secondary, almost insignificant, since it can be derived from the message
flow.
It is worth noting that the global models used in WSFL [21] (replaced by

BPEL4WS) and WSCI do not guarantee that the interfaces specified at the
individual collaboration partners’ sides are inter-operatable. A global model
is merely a one-to-one mapping between port types from WSDL point of
view, at the action-level rather than the process-level. Thus compared with
WSCI, WSFL, etc, BPSS provides independent collaboration definitions
rather than two or more interfaces with a behavior glued together with a
global model.
Another difference between BPSS and BPEL4WS or WSCI is the

interaction style. WSCI by its name is an interface language for describ-
ing conversation flows. Interface based specification is suitable for providing
server-centered view but not peer-to-peer view. Business collaboration is
peer-to-peer where interfaces disappear behind collaboration definitions.
To sum-up, public and peer conversation processes take different views on

conversation and have different roles in business interaction. A BPSS
specification provides an abstract and publicly observed view of collabora-
tion, free of the context of any participating party. A BPEL4WS or WSCI
specification provides a one-side view of conversation, which may be
sensitive to local context. Such a one-side view can be registered as an
interface for local service composition.
Figure 2 illustrates such an example where the buyer side service controls a

conditional branch of activities for confirming or canceling a purchase order,
in the local context. The local interface of conversation in WSCI at the
buyer’s side specifies such a ‘‘complex activity’’ in the following way.

<switch>

<case>

<condition> tns:CancelOrderCondition <=condition>

<action name = ‘‘CancelOrder’’

role = ‘‘tns:buyer’’

operation = ‘‘tns: BuyerToSeller/CancelOrder’’=>

<=case>

<default>

<action name = ‘‘ConfirmOrder’’

role = ‘‘tns:buyer’’

operation = ‘‘tns: BuyerToSeller/ConfirmOrder’’=>

<=default>

<=switch>

where the operation of an action refers to a WSDL operation. For example,
the operation ‘‘BuyerToSeller/ConfirmOrder’’ is specified as below.

116 Q. Chen et al.

www.manaraa.com

<portType name = ‘‘BuyerToSeller’’>

<operation name = ‘‘ConfirmOrder’’>

<output message = ‘‘tns:ConfirmOrderRequest’’/>

<input message = ‘‘tns:Invoice’’/>

</operation>

<operation name = ‘‘CancelOrder’’>

<output message = ‘‘tns:CancelOrderRequest’’/>

</operation>

</portType>

The condition ‘‘CancelOrderCondition’’ is a WSCI property defined in the
local context.
However, the local context of one party has no interest to its peer party. As

mentioned above, a seller is not interested in why a purchase order is
confirmed or cancelled by the buyer, but only interested in which message is
actually received.
The public interface of conversation for the above example, expressed in

BPSS, looks like the following.

< BusinessTransactionActivity

name=‘‘Confirm’’

businessTransaction=‘‘ConfirmOrder’’

fromAuthorizedRole=‘‘buyer’’

isConcurrent=‘‘false’’

toAuthorizedRole=‘‘seller’’/>

<BusinessTransactionActivity

name=‘‘Cancel’’

Public Conversation

Process

(doc-exchange)

Local-side Conversation Process

Local condition
Order

Cancel OrderConfirm Order

BPSSWSCI

Fig. 2. Manage conversation in local context and in public context

How public conversation management integrated with local business process management 117

www.manaraa.com

businessTransaction=‘‘CancelOrder’’

fromAuthorizedRole=‘‘buyer’’

isConcurrent=‘‘false’’

toAuthorizedRole=‘‘seller’’/>

<Fork name=‘‘Fork’’/>

<Join name=‘‘Join’’ waitForAll=‘‘false’’/>

<Transition conditionGuard=‘‘Success’’

fromBusinessState=‘‘Fork’’

toBusinessState=‘‘Confirm’’/>

<Transition conditionGuard=‘‘Success’’

fromBusinessState=‘‘Fork’’

toBusinessState=‘‘Cancel’’/>

<Transition

fromBusinessState=‘‘Confirm’’

toBusinessState=‘‘Join’’/>

<Transition

fromBusinessState=‘‘Cancel’’

toBusinessState=‘‘Join’’/>

where a BusinessTransaction is a WSDL style operation. As an example,
with BPSS, the BusinessTransaction ‘‘ConfirmOrder’’ is specified by the
following.

<BusinessTransaction

name=‘‘ConfirmOrder’’ pattern=‘‘RequestResponse’’>

<RequestingBusinessActivity

name=‘‘ConfirmOrderRequest’’

isAuthorizationRequired=‘‘true’’

isIntelligibleCheckRequired=‘‘false’’

isNonRepudiationRequired=‘‘false’’>

<DocumentEnvelope

businessDocument=‘‘OrderConfirmation’’/>

<RespondingBusinessActivity

118 Q. Chen et al.

www.manaraa.com

name=‘‘ConfirmOrderResponse’’

isAuthorizationRequired=‘‘true’’

isIntelligibleCheckRequired=‘‘false’’

isNonRepudiationReceiptRequired=‘‘false’’>

<DocumentEnvelope businessDocument=‘‘Invoice’’/>

</RespondingBusinessActivity>

</BusinessTransaction>

This kind of public definition of conversation provides a common view
to business interaction; it is free of any local context of any particu-
lar participant; it shows the commonly observable behavior of collabo-
ration.

2.2 Mapping BPEL4WS or WSCI to BPSS

In order to handle pure conversation management separately from local
business process management, we can

– map a BPEL4WS or WSCI specification to the counterpart BPSS
specification, then

– use the derived BPSS specification to underlie conversation management,
and

– integrate the conversation management with the business process
management that directly or indirectly supports the implementation of
the BPEL4WS or WSCI process.

When deriving a BPSS specification out of a BPEL4WS or WSCI
specification we keep in mind that the former is used to specify the public
observable behavior of conversation, and the latter is used to specify the
local control of conversation,. Therefore the major effect of derivation is to
drop local context as illustrated in the following examples.

– A conditional branch of activities specified in WSCI, show up in the
resulting BPSS specification as a disjunction of activities, regardless of any
local business logic behind the selection.

– In BPEL4WS and WSCI, the notions called property and context are
introduced to refer to local variables that correlate to message parts,
information extracted from messages using ‘‘selector’’, or information
about local services. These notions are somewhat related to the local
context and have no counterpart in BPSS.

We used XSLT run on Xalan to specify the mapping from a peer
conversation process specification in BPEL4WS or WSCI to a public
conversation process specification in BPSS. The detail patterns of the
mapping will be reported separately.

How public conversation management integrated with local business process management 119

www.manaraa.com

3 Run-time support: dynamic interaction between conversation management
and process management

We have developed a CM system under the ebXML’s BPSS standard for
handling peer-to-peer collaboration between two or more parties, and
embedded it in our Collaborative Process Management (CPM) platform [13].
As shown in Fig. 3, the CPM for supporting inter-enterprise collaboration

is potentially made of three communicating components for handling
conversations, local business processes and actions respectively.

– The Conversation Manager (CM) handles inter-enterprise business inter-
action based on an ICP model (conversation model). A core function of CM
is to enforce the choreography of document exchange.

– The Process Manager (PM) runs local processes based on a business process
model. A core function of PM is to enforce the rules for triggering tasks.
These tasks contribute to the accomplishment of the local process, including
document manipulation as required by the conversation activities.

– The Action Manager (AM) dispatches and invokes local applications,
services or processes to perform process tasks. An action provides an
actual implementation of document processing, provisioning or other
applications. Actions may be called through local or remote invocation,
based on CORBA, WSDL, etc. The invocation may be made synchronous
or asynchronous.

This architecture provides a clear separation of CM, PM and AM
functionally, and allows the maximal usability of existing workflow system
components. Run-time conversation support includes the following two
major functions:

– Validating document exchange choreography; and
– Enabling CM and PM to inter-operate based on conversation model driven
asynchronous task activation.

The BPSS-based conversation manager handles conversation activities
similar to the way a workflow system handles process tasks. However,
enforcing the choreography of conversation activities must take into account

 messages for

doc-exchange

AMPMCM

WF engine

CPM

Conversation Business process

Fig. 3. Conceptual components of a CPM – conversation manager, process manager and action

manager

120 Q. Chen et al.

www.manaraa.com

not only the existence of inbound and outbound documents, but also the
order and time for those documents to send or to be received in the
interaction with peers. In inter-enterprise collaboration, each enterprise is
supposed to provide its own conversation management based on the
commonly agreed BPSS specifications.
Given a conversation process, C, and the coupled local business process, P,

even if the task flow of P is consistent with the order of document exchange
specified in C, it is difficult to synchronize the execution paces of P and C in
terms of synchronous task activation, especially when P involves other
private applications and runs at a different pace from C. In order to resolve
this problem, we have developed the asynchronous task activation mechanism
for managing interaction between a conversation process instance and the
corresponding local business process instance.
In a workflow system, activating a task may mean executing it right away

or schedule it to run. Conceptually a task is activated by the satisfaction of
the ‘‘task activation conditions’’. When a process is specified with inter-linked
tasks, a link from task T1 to task T2 actually represents an activation
condition of T2 relating to the execution status of T1. From this point, a
business process may also be viewed as a set of rules for task activation,
process termination, etc. The CPM system developed at CommerceOne Inc.
[13], like many others, supports this model.
Further, we distinguish synchronous and asynchronous task activation. In

general, synchronous activationmeans an event, such as notifying the status of
a precedent task, directly activates the task; asynchronous activation means
an event causes the update of the base data underlying the task activation
condition, which may potentially make the task ready to run, but checking
conditions and activating the task is handled by a separate thread of control.
Refer to Fig. 4, the proposed asynchronous task activation mechanism can

be explained as below.

– In the execution of a business process, a task can be scheduled to run based
on certain task-activation conditions, and these conditions are checked
against certain underlying data.

Verification result

Private Process

Task activate

condition

Rule-based activity

scheduler

base data

PM

CPM message handler

Doc-exchange

information

BPSS template

CM

BPSS instance

Fig. 4. CM as conversation model driven asynchronous task activator

How public conversation management integrated with local business process management 121

www.manaraa.com

– In evolving a conversation process instance upon sending or receiving a
document, valid document exchange information can be generated for
updating the ‘‘base-data’’ underlying task activation-conditions.

Asynchronously, the task scheduler of a PM will check those conditions to
schedule tasks, as a separate thread of control.
At a business site, BPSS based conversation validation is made with

respect to each document sent or received. The following generic document-
exchange information is used as the input parameters of the validation:
collaboration ID; conversation-activity name that represents a service;
sender; receiver; and document name.
The above document exchange information is validated based on the

template and execution instance of the BPSS conversation process. When it
is validated, at the minimum the following information will be derived for
updating the ‘‘base-data’’ underlying task activation-conditions; otherwise
appropriate error messages will be returned. The base-data updates can be
made by the CM using PM’s API, or by the PM using the information
returned from CM: collaboration ID; conversation activity; interaction-
time; requesting player and its role; responding player and its role;
document name; action-type (‘‘response’’ or ‘‘request’’); validation status.
This resulting data may be selected to underlie task-activation conditions.
It is worth noting that the mapping between the information generated by

CM and the base data underlying the task activation conditions in PM must
be provided. With such mapping, conversation processes and local business
processes can be defined independently.
Interoperating a CM and a PM under the asynchronous task activation

mechanism actually represents the simplest approach to bridging a conver-
sation model and a business process model. We see that when the BPSS-based
conversation manager verifies document exchanges, and has the verification
results used to set up the task activation conditions for the local processes,

– the BPSS-based conversation manager may be viewed as the extension of
the PM’s rules engine for task scheduling;

– the conversation process instance may be viewed as the extension of the
‘‘fact base’’ searched by the rules engine through APIs.

From this point of view, the BPSS-based conversation manager can be
considered as a conversation model driven asynchronous task activator that the
rule based task scheduler must go through. More significantly, by providing
a set of generic APIs between CM and PM, multiple CMs can be utilized for
supporting different inter-enterprise interaction standards, and interact with
PM in a uniform way.
The above Architecture provides a clean separation of Conversation

Process Management and Local Process Management. Alternatively, we can
also treat Conversation Manager as a special Action Manager. Let’s call this
special Action Manager for Managing Conversation the Conversation Action
Manager(CAM).
Action Managers deal with executing tasks. The Conversation Activities of

a Conversation Process can be modeled as a set of special task. There are
primarily four kinds of Conversation Activities or Conversation Tasks. Send
document, Receive Document, Send and Receive Document, and Send
Response to a Received Document. These map to the WSDL Notify, One

122 Q. Chen et al.

www.manaraa.com

Way, Request Response and Solicit Response (The response portion). The
CAM executes these tasks.
Normally an Action Manager just manages execution of tasks, but CAM is

a special Action Manager it goes beyond execution of individual tasks, it also
manages the overall Conversation Process associated with these tasks. The
CAM evolves and validates Conversation Processes as individual Conver-
sation Tasks get executed.

The CAM supports the following features:
– Provide interface for PM to trigger Conversation tasks.
– Interface with Messaging layer for performing document exchange
– Evolve and Validate Conversation Process

By combining the features of Action Manager and Conversation Manager
into one, the cost of handling each message is reduced. Each message is
opened and parsed just once. Also there are no new interfaces that need to be
exposed by PM. The CAM uses the standard interface exposed by PM for
AM interaction. This Architecture provides a better overall performance and
cost of maintenance.

4 Supporting transaction semantics and preventing deadlocks

4.1 Supporting transaction semantics

As business collaboration involves multiple participants without central-
ized control, in order to support transaction semantics, appropriate
collaboration protocols must be introduced and followed by each
participant on a trustable basis. Further, messages exchanged between
participants must carry the information, indicating which collaboration
protocols are being adapted.

From transaction point of view, there exist two types of conversation
oriented inter-business collaborations.

– Transactional collaboration where the conversational activities have a
short duration and executed within limited trust domains. Their collab-
oration has the ‘‘all or nothing’’ property; but which is enforced at each
participant’s site individually according to the protocols they supposed to
follow.

– Non-transactional collaboration where the conversational activities
are long in duration and desire to apply business logic to handle business
exceptions. The long duration prohibits locking data resources to make
actions tentative and hidden from other applications. Instead, actions are
applied immediately and are permanent. In case of failure, each partic-
ipant can make compensation at its own site at its own choice.

The protocols of transactional collaboration govern the atomicity of
multiple conversation activities and the associated process activities. Existing
transaction processing systems can be used at each site. The transaction
related Information exchanged between collaboration participants include
the status with respect to two-phase-commit, commit/about decision, etc.
We plan to adapt the notification mechanism described in WS-Coordination

How public conversation management integrated with local business process management 123

www.manaraa.com

[22] and WS-Transaction [23] proposals to synchronize peer-wise transac-
tionmanagement.

4.2 Preventing deadlock caused by message delivery mis-order

A key design issue is to maintain the right order of message processing. For
various reasons the messages may not be delivered in the expected order, for
example, consider a process collaboration involving three peers A, B and C,
responsible for tasks T1, T2 and T3 respectively. These tasks are to be
executed in the order T1, T2, T3.

– When task T1 run at A completed, A notified B and C the completion of T1,
in a message, msg1;

– Upon receipt of msg1, B started executing task T2;
– When T2 completed, B notified A and C the completion of task T2, in a
message, msg2.

In this scenario, a possible consequence caused by out-of-order message
delivery is, when msg2 reached C, it hasn’t received msg1. In this case,
processing msg2 at C can lead to an inconsistent result.
Queuing technique and the knowledge drawn from conversation process

definitions are used to resolve the out-of-order message delivery problem.
Each site is facilitated with a conversation process specific queue interfaced
to the process definition handler and the process instance log handler, using
process definitions and execution histories to make operational decisions.
The conversation manager is provided with a queue manager with the

following functionalities.

– When a message is received, check if it is ready to be processed based on the
conversation process definition, execution history and queued messages,
and if not, queue the message. In the above example, if msg2 for task T2

cannot be executed at C since C hasn’t received the task completion
message for task T1, msg2 is to be put in the queued first.

– After a new message is processed, check if any queued message is ready to
be processed as a result, and if there is, process it. In the above example,
assume that C queued msg2 for task T2 since it did not receive the task
completion message, msg1, for T1. Later, when msg1 was eventually
received, C would process msg1 for T1 first, followed by processing msg2 for
task T2.

– When an internal event about process instance status change (e.g. started,
terminated, suspended) is received, the queuing server check if the change
makes any queued message ready to be processed.

5 Conclusion and comparison

In order for enterprises to collaborate at the business-process level, they must
support two kinds of processes: the public conversation process specifying
the ‘‘conversation-flow’’, and the local business process specifying the ‘‘work-
flow’’ that fulfills the conversation activities.

124 Q. Chen et al.

www.manaraa.com

In this paper we discussed the relationship between conversation manage-
ment and business process management, and between public conversation
processes and peer conversation processes. We then illustrated the system we
built for inter-enterprise collaboration that is characterized by separating
conversation management, business process management and action man-
agement, and by interacting a conversation process instance with a business
process instance dynamically in terms of the conversation model driven
asynchronous task activation mechanism. The conversation manager can be
used to validate document exchange at run-time, to activate process tasks for
manipulating documents, and to test the behavior of local processes in
supporting conversations.
Our approach is based on peer-to-peer process interaction model, it clearly

differs from the centralized workflow management [21], from the conven-
tional process inter-operation for enforcing ad-hoc task dependencies and
data exchanges in a single enterprise, and from the invocation based process
decentralization seen in [12], etc. This work has also elevated the agent based
peer-to-peer interaction [6–7] to the process level.
Different from WSDL [20], Rosetta-net [15], BPML [3], that support point

of conversation at action-level but not directly correlated at the process-level,
this work focuses on choreographed conversation. Indeed, dealing with point
of conversation can provide certain flexibility, but can hardly follow a
commonly agreed conversation model standard such as ebXML BPSS [11].
Further, BPEL4WS [2] and WSCL [19] are used to offer a single party view
rather than the public view, to the collaboration. As a result, an implemen-
tation does not present a general model of peer-to-peer synchronized
execution among multiple conversation activities; for instance, it does not
intend to address how the partner process instances are synchronized, or
made aware of the progress of the peer processes.
Interoperating inter-enterprise collaborations and intra-enterprise business

processes is a very practical and challenging issue faced by many organiza-
tions. We see the difference between conversation models that underlie the
ICP standards and the conventional business process models that the existing
workflow engines support. Most of the current efforts are characterized by
adopting one kind of models, either to ‘‘simulate’’ conversation activities by
the business process tasks, or take local processes as ‘‘point of services’’ to
‘‘fulfill’ conversation activities [1, 3, 20]. There lacks a formal execution
mechanism for interacting the public conversation process execution and
local business process execution at run-time. In fact, to our knowledge, there
is no real implementation reported by far on separating run-time conver-
sation management and business process management, while interacting
them dynamically.
Compared with the related work, our approach allows us to provide a clear

separation of inter-enterprise conversation management and local business
process management, to make full use of existing workflow system
components, to support both public conversation processes and local
business processes, and to interact CM and PM dynamically.
We are currently studying the mechanism for modeling both interface-

based service composition and inter-enterprise collaboration, towards the
development of a unified specification language.

How public conversation management integrated with local business process management 125

www.manaraa.com

References

1. BEA System(2002) Intalio, SAP, Sun Microsystems, ‘‘Web Service Choreography Interface’’

2. BPEL4WS, ‘‘Business Process Execution Language for Web Service’’, www-3.ibm.com/

software/solutions/webservices/

3. BPML (2002) ‘‘Business Process Markup Language’’, www.BPMI.org

4. Chen Q, Hsu M (2002) CPM Revisited – An Architecture Comparison, 2002 IFCIS

Conference on Cooperative Information Systems (CoopIS’2002), USA

5. Chen Q, Hsu M (2001) Inter-Enterprise Collaborative Business Process Management,

Proceedings of 17th International Conference on Data Engineering (ICDE-2001), Germany

6. Chen Q, Dayal U, Hsu M (2001) Conceptual Modeling for Collaborative E-business

Processes, ER-2001

7. Chweh CR (2001) Peer-to-peer computing transforms file-sharing and large-scale distributed

computing, IEEE Software, Vol 18, No 1

8. Clark D (2001) Face-to-face with peer-to-peer networking, Computer, Vol 34, No 1

9. Dayal U, Hsu M, Ladin R (2001) Business Process Coordination: State of the Art, Trends,

and Open Issues, Presentation on VLDB 10 years best paper award, Proceedings of VLDB

2001, Italy

10. Document Object Model, http://www.w3.org/DOM/

11. EbXML.org, Business Process Specification Schema’’, V1.01, 2001

12. Koetsier M, Grefen P, Vonk J (2000) ‘‘Contracts for Cross-Organizational Workflow

Management’’, Proc. EC-Web’2000

13. Mehta VO, Shrotriya S (2001) ‘‘Collaborative Business Process Management System Update

for Marketsite Version 4.6’’, Internal Document, Commerce One Inc.

14. OAG, ‘‘OAGIS Implementation using CPA, CPP and BPSS Specification 1.0’’, http://

xml.coverpages.org/OAGI-ebXML-WhitePaper-103.pdf

15. Rosetta-net, www.rosettaNet.org

16. SOAP, ‘‘Simple Object Access Protocol’’, http://msdn.Microsoft.com/xml/general/soap-

spec.asp, www.w3c.org

17. Workflow Management Coalition, www.aiim.org/wfmc/mainframe.htm

18. WSCI, ‘‘Web Service Choreography Interface’’, Tech Report by Italio, SAP, BEA, Sun

Microsystems. 2002

19. WSCL, ‘‘Web Service Conversation Language’’, HP Submission to W3C, www.w3c.org

20. WSDL, ‘‘Web Service Description Language’’, www.w3c.org

21. WSFL, ‘‘Web Service Flow Language’’, www-3.ibm.com/software/solutions/webservices/

22. WS-Coordination, http://www-106.ibm.com/developerworks/library/ws-coor/

23. WS-Transaction, http://www-106.ibm.com/developerworks/webservices/library/ws-tran-

spec/

126 Q. Chen et al.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

